Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products

نویسندگان

  • Ana D. Brandão
  • Romain Gerard
  • Johannes Gumpinger
  • Stefano Beretta
  • Advenit Makaya
  • Laurent Pambaguian
  • Tommaso Ghidini
چکیده

This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Additive Manufacturing in Marine Industry

The advantage of additive manufacturing (AM) (e.g. reasonable time and expense in prototyping, and reliable product) has triggered the idea of using this method in manufacturing of marine vessels components. The current article tries to introduce basic concepts of AM method and its application in marine industry; have a glance at additive-manufactured parts microstructure; elaborate the challen...

متن کامل

On the Study of Mechanical Properties of Aluminum/Nano-Alumina Composites Produced via Powder Injection Molding

Powder Injection Molding (PIM) is a precision manufacturing process used for production of advanced composites. Mixing of polymeric binder with metal powders, molding of feedstock, de-binding of brown parts and sintering of green samples are four main steps of this process. In the present study, the compounds containing multi-component binder system and aluminum/ nano-alumina (0-9 wt.%) powders...

متن کامل

The Effect of Binder Components and Powder to Binder Ratio on Rheological Properties of Mg-SiC Feedstocks

Rheological characteristics of powder injection molding PIM feedstocks play an important role in final properties of manufactured MMCs. In this study, six formulations composed of magnesium and SiC powder (99:1 wt.%) and a specific binder  were prepared to investigate the influence of binder composition, powder to binder ratio, time and temperature on rheological properties of the feedstock. Th...

متن کامل

Investigating of Process Design Parameters in 4043 alloy Additive Manufactured specimens, to create external features of cylinder head

In Wire and Arc Additive Manufacturing (WAAM), a 3D object is created from small material sectors,. It usually adds layers of material continuously to produce the final shape. The challenges facing additive manufacturing methods for functional or mass production parts, are still complex geometries, used materials, quality of manufactured components, cycle time and cost. The solubility of hydrog...

متن کامل

A Review on Selective Laser Sintering: A Rapid Prototyping Technology

The components which were assumed to be very difficult to produce or manufacture some years ago can now be made easily using additive manufacturing technology. Additive Manufacturing offers many advantages in the production of parts, presenting freedom for design with the ability to manufacture single or multiple components from a wide range of materials. Different techniques of additive manufa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017